CRC110: Symmetrien und Strukturbildung in QCD

Carsten Urbach

HISKP, University of Bonn

KHuK, Bad Honnef, November 2019

- form a CRC combining German nodes Bonn, Munich with Chinese node Beijing
- \Rightarrow with purely theoretical focus on QCD!
 - participating institutions first funding period (2012):
 - Rheinische Friedrich-Wilhelms-Universität Bonn
 - Peking University, Beijing
 - Technische Universität München
 - Forschungszentrum Jülich
 - Institute of High Energy Physics, Beijing
 - Theoretical Physics Center for Science Facilities, Beijing
 - additional since second funding period (2016):
 - Ruhr-Universität Bochum
 - Institute of Theoretical Physics, Beijing
 - experimental component: PW analyses

@ CRC110 general meeting at PKU 2017

Ambition

- \Rightarrow deepen our understanding of strong QCD and the SM
 - strong QCD manifests itself in many different forms of structures
 - states of quarks and gluons: hadrons in particular also XYZ states
 - states mostly made from nucleons: atomic nuclei
 - connected to very different scales
 - from 2.2 MeV Deuteron binding energy to $\Lambda_{\rm QCD} \approx 240 \text{ MeV}$ to $m_N \approx 1 \text{ GeV}$ to ...
 - QCD can be used as a laboratory to test our understanding of symmetries
 - CPT
 - · chiral symmetry

Ambition

- joint approach hadron/particle and nuclear physics
- joint application of non-perturbative methods
 - effective field theories
 - lattice methods (lattice QCD and nuclear lattice EFT)
 - symmetry constrained modeling (phenomenology)
- intense interaction with ongoing experimental efforts some of our project leaders are also members of experiments

- by enlarge, projects are led by at least one Chinese and one German PI
- now 20 projects with 35 project leaders
- longer term student exchanges and shared postdocs
- dual doctorates from Chinese and German institutions
- longer visits by Chinese and German PIs to Germany or China
- co-organised workshops and conferences (20 by now)

- before 2012: selected collaborations among single persons
- 2012: CRC110 starts MoU for common graduate education (UBonn, PKU, ITP)
- 2012-: many workshops CRC organised or co-organised
- 2014: MoU for common graduate education (UBonn, IHEP)
- 2016: "Physik Show" travels to China
- 2018: RMP on "Hadronic Molecules" written by 3 Chinese and 3 German project leaders
- 2019: common Postdoc between ITP and Bonn

- more than 600 peer reviewed papers, 150 with both Chinese and German authors among others in PRL, RMP, PR, Nature, PRD, JHEP, EPJC, EPJA, ...
- among those: a number of review articles
- more than 100 invited talks at conferences and workshops
- career booster: > 15 former postdocs now permanent in academia (professor or staff)
- CRC110 postdocs and students successful in the Chinese 1000 Talents Project
- more than 100 finished or ongoing dissertations

- traditionally: use chiral perturbation theory (ChPT) for meson masses and decay constants computed in lattice QCD
- however, lattice QCD nowadays able to compute many more observables, e.g.
 - phase shifts, pole positions
 - three particle couplings
 - transition matrix elements
- guidance beyond ChPT needed for extrapolations and analysis
- strength of the CRC110: expertise in both fields

Outreach Activities

- "Physik Show"
 - various places in Germany and Europe
 - in 2016 first time in Beijing
 - EPS outreach prize

academies for high school students: "Schülerakademien Teilchenphysik"

• school teacher training: "Lehrerfortbildung Teilchenphysik"

Fundamental questions:

- which forms of strongly interacting particles and matter are generated by QCD?
- how do the underlying symmetries manifest themselves in the spectrum and interaction of QCD?
- \Rightarrow two project groups
 - A symmetries
 - B emergence of structure

Three examples in the following

- Nuclear Lattice Simulations: very successful combination of lattice and EFT methods
- allowed for the first "at initio" calculation of the Hoyle state

[Epelbaum et al., PRL 109 (2012)]

- newly developed adiabatic projection method for reactions: Algorithmic scaling $\propto (A_1 + A_2)^2$
- good description of $\alpha \alpha$ scattering

[Elhatisari et al., Nature 528 (2015)]

- Nuclear Lattice Simulations: very successful combination of lattice and EFT methods
- allowed for the first "at initio" calculation of the Hoyle state

[Epelbaum et al., PRL 109 (2012)]

- newly developed adiabatic projection method for reactions: Algorithmic scaling $\propto (A_1 + A_2)^2$
- good description of $\alpha \alpha$ scattering

[Elhatisari et al., Nature 528 (2015)]

• this seminal result on $\alpha - \alpha$ scattering paves the way towards

$$\alpha + {}^{12}C \quad \rightarrow \quad {}^{16}O + \gamma$$

holy grail of nuclear astrophysics

- long term goal: connect lattice QCD and NLEFT
- ⇒ compute low energy constants from lattice QCD as input for NLEFT calculations

very successful combination of lattice and EFT methods

lattice interacting versus free energy levels

[ETMC: Werner et al., arxiv:1907.01237]

- Lüscher method relates energy shifts to phase shifts
- lattice results at un-physically large pion mass values
- extrapolation using EFT

[Djukanovic et al., Phys. Lett. B680, 235]

 good agreement to experiment for the ρ-mass, slight miss-match for the width

[ETMC: Werner et al., arxiv:1907.01237]

- Lüscher method relates energy shifts to phase shifts
- lattice results at un-physically large pion mass values
- extrapolation using EFT

[Djukanovic et al., Phys. Lett. B680, 235]

 good agreement to experiment for the ρ-mass, slight miss-match for the width

[ETMC: Werner et al., arxiv:1907.01237]

- many simulations in Lattice QCD now at the physical point!
- **preliminary** result for the ρ with $N_f = 2$
- three pion mass values including one at $M_{\pi} = 135$ MeV.
- line an IAM fit to all three ensembles
- move towards three particle interactions

- the $D_0^{\star}(2300)$ (former $D_0^{\star}(2400)$) scalar I = 1/2 meson
- lot of attention: mass very different from the quark model prediction
- D_0^{\star} properties also influence the form factor $f_+ \rightarrow |V_{cd}|$
- a first lattice study with $D\pi,\,D\eta$ and $D_s\bar{K}$ coupled channels [Moir et al, JHEP 1610, 011 (2016)]
- ⇒ find a (single pole) bound state identified as $D_0^*(2300)$ based on a parametrization of the *t*-matrix
 - however, situation might be different

[Albalabejo et al., Phys.Lett. B767 (2017)]

· post diction of the lattice energy levels with LEC input

[Liu et al., Phys. Rev. D 87, 014508 (2013)]

this analysis reveals a two pole structure!

- two pole structure can be understood from group theory
- two poles $(M, \Gamma/2)$ for D_0^{\star} in MeV

(2105(7), 102(11)); (2451(30), 134(8))

versus PDG in MeV

 $(2318 \pm 29, 134 \pm 20)$

is there experimental evidence for this?

• more two-pole candidates:

 D_1, B_0^{\star}, B_1

- CRC110: successful Sino-German endeavour with theory emphasis
- striving to improve our understanding of strong QCD and the SM
- · strength in combining expertise in many different fields and methods
- foster Sino-German collaboration further
- working towards third funding period starting in July 2020